An inner product space is a vector space V equipped with an inner product which is a function $\langle , \rangle : V \times V \to \mathbb{R}$ satisfying

(I-a)
$$\langle \vec{v}, \vec{v} \rangle \geq 0$$
, and $\langle \vec{v}, \vec{v} \rangle = 0$ iff $v = \vec{0}$,

(I-b) $\langle \vec{v}, \vec{w} \rangle = \langle \vec{w}, \vec{v} \rangle$,

(I-c)
$$\langle \vec{v} + \vec{u}, \vec{w} \rangle = \langle \vec{v}, \vec{w} \rangle + \langle \vec{u}, \vec{w} \rangle$$
 and $\langle c\vec{v}, \vec{w} \rangle = c \langle \vec{v}, \vec{w} \rangle$.

Theorem 1. Given an inner product \langle , \rangle , we can define a norm || || by

$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}.$$

Namely, $\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$ satisfies the following

(N-a)
$$\|\vec{v}\| \ge 0$$
, and $\|\vec{v}\| = 0$ iff $v = \vec{0}$,

(N-b) $||c\vec{v}|| = |c|||\vec{v}||,$

(N-c) $\|\vec{v} + \vec{w}\| \le \|\vec{v}\| + \|\vec{w}\|$.

Proof. (I-a) implies (N-a). Also, we can obtain (N-b) by

$$||c\vec{v}||^2 = \langle c\vec{v}, c\vec{v} \rangle = c\langle \vec{v}, c\vec{v} \rangle = c\langle c\vec{v}, \vec{v} \rangle = c^2\langle \vec{v}, \vec{v} \rangle = c^2||\vec{v}||^2,$$

namely $||c\vec{v}|| = |c|||\vec{v}||$.

Next, we consider two **unit** vectors \vec{a}, \vec{b} , namely $||\vec{a}||^2 = \langle \vec{a}, \vec{a} \rangle = 1$ and $||\vec{b}||^2 = \langle \vec{b}, \vec{b} \rangle = 1$. Then, we have

$$\begin{split} 0 \leq & \|\vec{a} - \vec{b}\|^2 = \langle \vec{a} - \vec{b}, \vec{a} - \vec{b} \rangle = \langle \vec{a}, \vec{a} - \vec{b} \rangle - \langle \vec{b}, \vec{a} - \vec{b} \rangle \\ = & \langle \vec{a} - \vec{b}, \vec{a} \rangle - \langle \vec{a} - \vec{b}, \vec{b} \rangle = \langle \vec{a}, \vec{a} \rangle - \langle \vec{b}, \vec{a} \rangle - \langle \vec{a}, \vec{b} \rangle + \langle \vec{b}, \vec{b} \rangle \\ = & 2 - 2 \langle \vec{a}, \vec{b} \rangle, \end{split}$$

namely $\langle \vec{a}, \vec{b} \rangle \leq 1$ if $||\vec{a}|| = ||\vec{b}|| = 1$. We now claim

$$\langle \vec{v}, \vec{w} \rangle \le ||\vec{v}|| ||\vec{w}||.$$

If $\vec{v} = \vec{0}$, then $\langle \vec{0}, \vec{w} \rangle = \langle 0\vec{0}, \vec{w} \rangle = 0 \langle \vec{0}, \vec{w} \rangle = 0 = ||\vec{0}|| ||\vec{w}||$. If $\vec{v} \neq 0$ and $\vec{w} \neq 0$, then we can set $\vec{a} = \vec{v}/||\vec{v}||$ and $\vec{b} = \vec{w}/||\vec{w}||$. Then, we have

$$\begin{split} \|\vec{a}\|^2 &= \langle \vec{a}, \vec{a} \rangle = & \left\langle \frac{\vec{v}}{\|\vec{v}\|}, \frac{\vec{v}}{\|\vec{v}\|} \right\rangle = \frac{1}{\|\vec{v}\|} \left\langle \vec{v}, \frac{\vec{v}}{\|\vec{v}\|} \right\rangle \\ &= & \frac{1}{\|\vec{v}\|} \left\langle \frac{\vec{v}}{\|\vec{v}\|}, \vec{v} \right\rangle = \frac{1}{\|\vec{v}\|^2} \langle \vec{v}, \vec{v} \rangle = 1. \end{split}$$

In the same manner, we have $\|\vec{b}\| = 1$. Thus,

$$1 \geq \langle \vec{a}, \vec{b} \rangle = \left\langle \frac{\vec{v}}{\|\vec{v}\|}, \frac{\vec{w}}{\|\vec{w}\|} \right\rangle = \frac{1}{\|\vec{v}\| \|\vec{w}\|} \langle \vec{v}, \vec{w} \rangle,$$

namely $\langle \vec{v}, \vec{w} \rangle \leq ||\vec{v}|| ||\vec{w}||$. So, we can prove (N-c) as follows

$$\begin{aligned} \|\vec{v} + \vec{w}\|^2 &= \langle \vec{v} + \vec{w}, \vec{v} + \vec{w} \rangle = \langle \vec{v}, \vec{v} \rangle + 2\langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{w} \rangle \\ &= \|\vec{v}\|^2 + 2\langle \vec{v}, \vec{w} \rangle + \|\vec{w}\|^2 \\ &\leq \|\vec{v}\|^2 + 2\|\vec{v}\| \|\vec{w}\| + \|\vec{w}\|^2 = (\|\vec{v}\| + \|\vec{w}\|)^2. \end{aligned}$$

Example 2. There is no inner product \langle , \rangle_u of \mathbb{R}^2 such that $\sqrt{\langle \vec{v}, \vec{v} \rangle_w} = \|\vec{v}\|_u$, where $\|(v_1, v_2)\|_u = \max\{|v_1|, |v_2|\}$ is the uniform norm.

Proof. Assume that there exists an inner product \langle , \rangle_u satisfying the condition. We denote $e_1 = (1,0)$ and $e_2 = (0,1)$, Then,

$$1 = \|(1,1)\|^2 = \|e_1 + e_2\|^2 = \|e_1\|^2 + 2\langle e_1, e_2 \rangle + \|e_2\|^2 = 2 + 2\langle e_1, e_2 \rangle,$$

namely $\langle e_1, e_2 \rangle = -\frac{1}{2}$. However,

$$1 = \|(1, -1)\|^2 = \|e_1 - e_2\|^2 = \|e_1\|^2 - 2\langle e_1, e_2 \rangle + \|e_2\|^2 = 2 - 2\langle e_1, e_2 \rangle,$$
 namely $\langle e_1, e_2 \rangle = \frac{1}{2}$. Contradiction. \Box